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Abstract  

In this report, we investigate the influence of quasi-independent parameters and their 
potential influence on erosion in guns. Specifically, we examine the effects of flame temperature 
and the effect of assuming that the Lewis Number (ratio of mass to heat transport to the surface), 
Le, is one. The adiabatic flame temperature was reduced for a propellant through the addition 
of a diluent from a high of 3,843 K similar to that of M9 down to 3,004 K, which is near the 
value for M30A1 propellant. Mass fractions of critical species at the surface with and without 
the assumption of Le = 1 are presented, demonstrating that certain species preferentially reach 
the surface providing varied conditions for the surface reactions. The results for gun tube bore 
surface regression qualitatively agree with previous studies and with current experimental data. 
The propellant composition influence upon erosion must still be inferred at this time from the 
presence of specific product species at the surface because the finite-rate gas surface reactions 
are not well known under ballistic conditions. 
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1. Introduction 

The inner surfaces of most gun tubes regress as a result of various mechanisms, such as 

mechanical abrasion, pyrolysis, melting, spalling, and possibly others, when the gun is fired. 

Historically, the propellant adiabatic flame temperature (obtained from Gibbs free energy 

minimization with constant volume and no heat loss) has been considered to be the most important 

factor in determining erosivity [ 1-3]. Previous modeling and experimental efforts have not identified 

the fundamental cause of the erosion, and some discrepancies were found between flame-temperature 

correlations [3-5]; the discrepancies were not resolved. Attempts to model erosion using first 

principles have been and are currently being made [6-9], although it is believed that significant 

additional work is still required to understand the fundamental physics involved. 

In this study, the influence of propellant flame temperature on erosion is analyzed as an initial step 

toward understanding the principle components of the erosion problem in a parametric fashion. The 

contributions due to mechanical wear and abrasion are not included in the study, nor are the effects 

of altered material composition on the surface. Instead, this study focuses on the surface 

thermochemical portion of erosion using full equilibrium thermochemistry, independent heat 

transport, and multicomponent species mass transport to the surface. 

2. Erosion Model Description 

Although described elsewhere [8,9], for completeness, the basic outline and new additions to the 

U. S. Army Research Laboratory (ARL) erosion physics test model are elaborated upon here. The 

model consists of three fully coupled portions consisting of thermal ablation/heat transfer/conduction, 

mass transport, and thermochemistry. The code uses the gas-phase properties in the core flow of the 

gun tube from XKTC [10], and certain data from IBBLAKE [11-13]. The thermochemistry is 

assumed to be full-equilibrium chemistry and incorporates the NASA LEWIS [14] database. New 

additions to the model include: 



(1) variable surface physical properties, conductivity k(T), and specific heat Cp(T); 

(2) surface material phase change from body-centered cubic (BCC) to face-centered cubic 

(FCC) (the material replenishment section recognizes the surface temperature and the 

correct phase); 

(3) a user-defined "freeze-out" temperature that deactivates the surface chemistry; 

(4) an iterative procedure that provides convergence for surface-control volume temperature 

(the gas and solid specific heats are temperature-dependant and require iteration for 

convergence); and 

(5) all user-defined primary inputs (i.e., no hardwired inputs and case to case consistency). 

The model considers both melting and pyrolysis from surface chemistry. Conceptually, as shown 

in Figure 1, the surface heats from convection until the chemical activation temperature is overcome. 

At this point, surface reactions are permitted to occur, releasing additional energy into the system 

as a source term at the surface and producing appropriate gaseous, solid, or liquid products. The 

reaction products can be either remain as some solid materials or be removed from the area as liquids 

or gases. The later case results in pyrolysis or ablation. As the surface regresses, the solids are 

refreshed accordingly. 

The following assumptions have been made in the erosion model: 

(1) one-dimensional (1 -D) heat conduction, 

(2) no subsurface chemical diffusion or reactions, 

(3) instantaneous removal of all surface liquids and gas products, 
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Figure 1. Conceptual Erosion Model Illustration. 

(4) no feedback to the interior ballistics calculation in the core flow, 

(5) release and treatment of chemical energy as a surface source term, and 

(6) freezing of species (i.e., no chemical reactions) from the core flow to the wall. 

The surface energy balance (when there is no melting) consists of the convective heat input to the 

surface, along with the possible contribution due to the surface reaction, shown in equation (1), where 

T is the wall temperature, k is the thermal conductivity, and h is the convection coefficient [15]. This 

source term is balanced with the energy conducted through the material: 

dT hf T    - T  .. \ = -k— - Source. 
^     gas wall / -v. dt 

(1) 

However, when the system is melting, the energy balance also includes the fixed-surface temperature 

condition (because the temperature cannot rise beyond this value as the material is removed as fast 



as it melts and additional energy is preferentially used for more phase transition), as well as the latent 

heat of formation of the molten material, as shown in equations (2) and (3): 

*wall   =   *melt ' *•  ' 

and 

pLf = h< T^~ T^ ) + kf + S0UrCe- (3) 

In equation (3), L is the latent heat of formation, p is the density of the surface material, and s 

represents the instantaneous surface location that must be iterated upon for convergence until the 

energy balance is satisfied. 

3. Calculation Methodology for Flame-Temperature Study 

The calculations presented in this study were initiated with a BLAKE calculation of a notional 

propellant having an adiabatic flame temperature of 3,843 k. This particular baseline propellant (an 

altered JA2) was chosen because it had an exceptionally high adiabatic flame temperature, as well 

as it previously experimentally demonstrated erosivity [9]. The basic charge configuration had a 

notional slab geometry. The propellant flame temperature was reduced from the nominal value by 

adding a diluent (N2) to the nominal gas mixture in increasing mass percentages of 15%, 30%, and 

60%, without reducing the other components' mass fractions. As a result, the final percentage of 

diluent added was somewhat less than stated previously, as shown in Table 1. 

Using these formulations for the propellants with reduced flame temperature, ranging from 

3,843 K down to 3,004 K, iterations were then performed for the XKTC calculations, which involved 

altering the propellant mass and web, such that the projectile muzzle velocity, muzzle energy, and 

the peak pressure in the gun were held constant for all four scenarios. The results were used in the 

IBBLAKE calculations.  These calculations involved many iterations in order to determine the 
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combination of projectile mass, propellant mass, and web size which produced the desired results, 

while maintaining a burn-out condition at projectile exit. Although the total charge mass is changed 

for each permutation (see Table 1) an attempt is made to account for this effect later when presenting 

the results. 

The resulting information involving the gun tube core flow gas composition, temperature, 

pressure, and velocity for the four different scenarios was then used as input for the calculations; the 

results of which are discussed in section 4. 

4. Results 

Shown in Figures 2-5 are gun tube, inner-surface temperatures for three of the four notional 

propellant formulations (Table 1) at three axial locations along the gun tube wall, measured from the 

rear face of the tube: 635 mm; 686 mm; and 1,040 mm. The initial location of the base of the 

projectile is 559 mm. The flat areas at the top of the curves in Figures 2-4 are due to the surface 

temperature reaching a user-defined, surface melt temperature. What is seen in this data is the 

general reduction from the high, overall temperatures in Figure 2 to the lower temperatures in 

Figure 5. Note that Figures 2-4 reflect the time at which the surface remains at the melt temperature. 

Therefore, the larger these regions are, the more time the surface remained at the melt temperature 

and, thus, the more material was removed. However, for the propellant with the lowest adiabatic 

flame temperature of 3,004 K, the gun tube, inner-surface temperatures do not reach the melting 

temperature at any axial location in Figure 5, while, for the charge containing the propellant with the 

adiabatic flame temperature of 3,384 K (shown in Figure 4), only one axial location reaches the 

melting temperature. The two higher adiabatic flame temperature of 3,843 K and 3,603 K exhibit 

melting at two of the three chosen axial locations in Figures 2 and 3. 

Figure 6 integrates the total mass loss over time for the three propellants with the higher flame 

temperatures. The slight increase in the recession in Figure 6 before 3.5 ms and after 4.5 ms in the 

curves is due to the pyrolysis, which is also included in the total mass loss and intended for a 

follow-on study. 
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Figure 2.  Gun Tube Surface Temperatures for Three Axial Locations and a Single Firing of 
a Charge Having a Propellant Adiabatic Flame Temperature of 3,843 K. 
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Figure 3.  Gun Tube Surface Temperatures for Three Axial Locations and a Single Firing of 
a Charge Having a Propellant Adiabatic Flame Temperature of 3,603 K. 
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Figure 4.  Gun Tube Surface Temperatures for Three Axial Locations and a Single Firing of 
a Charge Having a Propellant Adiabatic Flame Temperature of 3,384 K. 
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Figure 5.  Gun Tube Surface Temperatures for Three Axial Locations and a Single Firing of 
a Charge Having a Propellant Adiabatic Flame Temperature of 3,004 K. 



Figure 6.   Computed Single-Shot Erosion Depths vs. Time for Propellant Flame Temperatures 
of 3,843 K; 3,603 K; and 3,384 K at Three Axial Locations Each. 

In Figure 7, both experimental and numerical data are presented as normalized erosion (surface 

regression) vs. adiabatic flame temperature. The experimental data include some data from a study 

presented by Ahmad [16] concerning 5-in/54 gun tube erosion data, as well as Kruczynski's [17] 

Ml99 M203A1 origin of rifling wear data per round and the original version of the M919 

25-mm-round average wear per round at the origin of rifling [18]. Ahmad's data include two 

different experimental data sets for a 5-in/54 system. The values with higher erosion are for a series 

of firings without coolant additives in the charge, while a series presented with lower erosive values 

included a talc wax liner in the charges to reduce the overall heat transported to the gun tube wall. 

Kruczynski' s data include both horizontal and vertical wear at the origin of rifling to account for the 

asymmetrical wear pattern seen in some artillery charges; however, both points are practically 

coincidental for this plot, including values not shown for the M203 charge. 
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Figure 7. Computed and Experimental Normalized Erosion per Round vs. Adiabatic Flame 
Temperature. The Numerical Calculations Are Also Normalized for Charge Mass 
Effects. The Adiabatic Flame Temperature for Various Propellants Is Shown for 
Reference. 

The computed numerical data shown in Figure 7 consist of two curves of four points each and 

are plotted as triangles. Both curves have been normalized to the maximum amount of computed 

wear occuring at the 635-mm axial location. The lower of the two curves reflects this normalization 

by having 1.0 as the maximum value of regression. This computed data was then renormalized to 

incorporate the maximum charge mass, as well as the maximum surface regression (percent 

maximum erosion/percent maximum charge), which resulted in the slightly higher plot. The general 

trend and values of erosivity vs. adiabatic flame temperature seems to be reasonable when compared 

to the experimental data presented for the 155-mm and 25-mm guns, which has also been normalized 

for regression. 

While the general regression trend and shape holds for the data of Ahmad [ 16], the values appear 

to be inexplicably shifted in temperature by about 700 K, possibly due to the fact the Ahmad was 

firing experimental charges. An interesting note in Figure 7 is that, even though no melting occurred 

for the propellant having the adiabatic flame temperature very close to that of M30A1, the computed 
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surface regression was about that seen by Kruczynski [17] who was firing M30A1 propellant. These 

pyrolization products and related effects, as was stated, are an area of a follow-on study that will 

investigate the products that the equilibrium chemistry calculation indicates and what actually is 

being removed from the surface. 

The photo of a 155-mm-howitzer origin of rifling in Figure 8 shows what type of erosion or 

pyrolization can occur at the origin of rifling. This photograph shows evidence of heat checking, 

cracking, and loss of lands; however, there is no obvious evidence of surface melting of this scale 

as the calculations predicted. Nonetheless, the situation is quite different for the M256 chromed gun 

tube shown in Figure 9, which fired JA2-type propellants. Evidence of chrome removal, surface 

pitting, and melting are all present in this photograph, as was also expected from the calculations. 

Figure 8.   155-mm Howitzer Origin of Rifling Showing Pyrolysis, Loss of Chrome, and Rifling 
Degradation [17]. 
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Holes 

Substrate Material 

Figure 9.   120-mm M256 Tank Cannon Surface at Forcing Cone Showing Chrome Stripping, 
Pits, and Melt Regions [25]. 

Propellant combustion, product species, and molar concentrations are presented in Figures 10 

and 11. The differences between the core flow product species in Figure 10 and the wall surface 

product species in Figure 11 are illustrative of the effect of multicomponent mass transport upon the 

species concentration at the surface. The species principally affected using nominal propellant by 

the mass transport are CO and C02. The concentrations in the core flow appear to contain less CO 

and more C02 than at the wall, where the concentration of CO rises and that of C02 is less. The 

CO/C02 varies approximately 15% between these regions. This ratio is thought to be very important 

[1,19-24]. Fundamental studies are underway to investigate mechanisms in which free carbon may 

12 
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be formed from either CO or C02 [24]. Eventually, the primary surface reactions and rates will be 

known and included in the surface reaction models. The proper state and species concentrations will 

be required to provide results based on experimentally validated physical processes. 

5. Conclusions 

Flame-temperature effects on erosion have been studied with four notional computational 

charges with the assumed gun tube properties for an M256 nonelectroplated cannon. These four 

notional charges had propellant adiabatic flame temperatures of 3,843 K; 3,603 K; 3,384 K; and 

3,004 K. While the trends in erosion match those seen previously of Ahmad, the actual values agree 

better with recent system data, specifically, recently measured data from the 155-mm M203A1 

charge and 25-mm M919 round erosion. 

Differences in species concentrations exist between the core flow and wall region. This 

difference may be critical in providing the correct input for chemical reactions at the surface, but, 

as of yet, the actual mechanisms of erosion at the surface remain unknown. 

Further parametric investigations of this type are needed in order to provide an understanding 

of the interactions of the thermal and chemical, with the ultimate inclusion of mechanical, 

components as well to erosion/wear. Also, this type of investigation provides guidance for further 

fundamental studies. 
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